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Abstract —In this paper a simple crack model is proposed and the behavior of this crack under stress is 
explored. The crack consists of an ordinary Griffith crack, but on either side of this crack, at a distance 
it. exist two slip planes that are parallel to the crack plane. It is assumed that slip can onl\ lake place 
on these two planes. Elsewhere the material is elastic. When w is set equal to zero the crack becomes a 
Bilby-Cottrell-Swinden crack. This crack model simulates in a simple way the elastic crack tip enclave 
model of a crack. Because w has a finite value the material around the crack tip is elastic. The crack is 
considered to be stressed in either mode II (plane strain shear) or mode III (anti-plane strain shear). It 
is found that for a virgin, stationary crack the stress intensity factor at the crack tip is equal to the 
conventional stress intensity factor when the stress is raised under a monotonically increasing load. 
However, when the crack tip advances under such a load the crack tip stress intensity factor is smaller 
than the conventional stress intensity factor. The fracture stress is proportional to the surface energy of 
the solid raised to a power. In general, this power is not equal to one half. For cyclic loading by using 
qualitative arguments it is shown that the crack can grow an incremental distance each cycle, and the 
growth law is a fourth power Paris equation. 

Resume—Dans eel article, nous proposons un modele simple pour une fissure dont nous etudions le 
comportement sous contrainte. Cette fissure est une fissure ordinaire de Griffith, mais il existe de chaque 
cöte de la fissure, ä une distance r, deux plans de glissement paralleles au plan de la fissure. Nous 
supposons que le glissement ne peut se produire que sur ces deux plans. Partout ailleurs. le materiau est 
elastique. Lorsque w egale zero, la fissure devient une fissure de Bilby, Cottrell el Swinden. Ce modele 
de fissure permet de simuler simplement le modele d'enclave d'une extremite de fissure elastique. w ayant 
une valeur finie, le materiau autour de lextreniite de la fissure est elastique. Nous considerons que la fissure 
est mise sous contrainte selon le mode II (cisaillemenl plan) ou le mode III (cisaillement anti-plan). Dans 
le cas d'une fissure vierge stationnaire, le facteur d'intensite de la contrainte a Pextremite de la fissure est 
egal au facteur d intensite de contrainte classique lorsque 1'on augmente la contrainte de maniere 
monotone. Cependant, lorsque l'extremite de la fissure avance sous I'efTet d'une teile contrainte, le facteur 
d'intensite de la contrainte ä Pextremite de la fissure est plus petit que le facteur d'intensite de contrainte 
classique. La contrainte de rupture est proportionnelle ä une puissance de Penergie superticielle du solide: 
en general, cette puissance n'est pas egale ä un demi. Dans le cas d'une charge cyclique. des arguments 
qualitatifs montrent que la fissure peut se propager sur une distance qui augmente a chaque cycle, et que 
la loi de croissance est une equation de Paris de degre quatre. 

Zusammenfassung—Ein einfaches Rißmodell wird vorgeschlagen. Insbesondere wird das Verhalten des 
Risses unter einer angelegten Spannung untersucht. Der Riß ist ein gewöhnlicher Grifiith-Riß. Auf beiden 
Seiten dieses Risses jedoch finden sich zwei Gleitebenen parallel zur Rißebene im Abstand »■. Es wird 
angenommen, daß Gleitung nur auf diesen beiden Ebenen abläuft, ansonsten ist das Material elastisch. 
Mit if =0 erhält man einen Riß entsprechend Bilby-Cottrell-Swinden. Das vorgelegt Modell beschreibt 
auf einfache Weise das Enklavenmodell einer elastischen Rißspitze. Da w einen endlichen Wert besitzt, 
ist die Rißspitze elastische. Es wird angenommen, daß der Riß entweder in Mode II (ebene Scherung) oder 
Mode III (anti-ebene Scherung) Spannungsmäßig belastet wird. Bei einem frischen stationären Riß gleicht 
der Spannungsintensitätsfaktor an der Rißspitze dem konventionellen Spannungsintensitätsfaktor, wenn 
die Spannung mit einer monoton ansteigenden Last erhöht wird. Wenn sich jedoch die Rißspitze unter 
einer solchen Last ausbreitet, dann wird der Spannungsintensitätsfaktor kleiner als der konventionelle. 
Die Bruchspannung ist proportional zur Oberflächenenergie des Festkörpers hoch einer Potenz, die nicht 
ein halb ist. Qualitative Argumente zeigen, daß der Riß unter zyklischer Belastung bei jedem Zyklus ein 
wenig wachsen kann; das Wachstum wird durch eine Parisgleichung der vierten Potenz beschrieben. 

INTRODUCTION stress concentration at the crack tip, and to confirm 
.... . i       j i • j    j results of an earlier more complex elastic enclave 
In this paper a very simple crack model is considered . , ,, -,1 . J, 

J    .     i   . .i.   r   J . i r   . ? i model [1,21. In our model, we assume that slip can 
tn order to elicit the fundamental features of a crack .•      .   
interacting with a deformation field generated by the 

occur on two slip planes, parallel to the cleavage 
plane, but displaced from it by distance iv in each 

tSupported in part by U.S. Army Research Office. direction. Figs I and 2. Our work will be couched in 
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Fig. I. Double slip plane model. The crack is assumed to be 
an alomically sharp slip crack on the negative v-axls with 
the tip at the origin. Two planes parallel to the crack plane- 
are permitted for dislocation generation and slip. The planes 
are assumed to be a distance » from the crack plane. Mode 
III or II will be assumed throughout for purposes of 

analysis. 

terms of the shielding afforded a crack by the defor- 
mation Held generated by the stress concentration at 
the crack tip. 

For our simple model, we will show that (I) the 
initial response of a crack to the generation of a 
deformation field on the two slip planes is essentially 
nonshielding in character; (2) that as the crack prop- 
agates, the stress intensity at the crack tip. A', is 
shielded from the external stress intensity, K. that is 
K > A',; and (3) that cyclic loading with work hard- 
ening can lead to crack growth. 

These results are based upon a particular form of 
one dimensional slip, and we can expect the results 
will be modified if slip occurs on planes which 
intersect the cleavage plane. We will discuss these 
modifications in a qualitative way. but the simple 
model nevertheless leads to results which highlight 
how the behavior of materials with real dislocations 
will differ from that of a plastic continuum. We also 
note here that our one dimensional model has certain 
similarities to the early BCS model [3] of fracture, but 
the main physical picture resulting in our case is 
different in important ways from the BCS results. We 
will work in mode III and mode II because the 
mathematics will be accessible to an analytic ap- 
proach (especially in mode III), but the general 
features are expected to apply to the more important 
mode I, as well. Finally, we note that our paper 
addresses the behavior of a crack whose tip is atom- 
ically sharp. 

THE CRACK TIP STRESS INTENSITY FACTOR 

In an earlier paper [4]. by one of us, we showed for 
a set of dislocations in mode III surrounding a sharp 
crack, that 

7=. - V^- K 

d 2// 
(I) 

where g is the force per unit length exerted on the 
defect, here referred to as / for the crack, cl for a 
dislocation, and G is the force on the conglomerate 
composed of crack plus dislocation distribution. G 
and g are complex functions of x + i.V. the crack is 
supposed to lie along the negative .v-axis with the tip 
at the origin, the real part of j? or (J is the v- 
component of the force, and the imaginary part the 

Xiliil 
TTTT 

; iiiiii 

K'O 

Fig. 2. Double slip plane model. Dislocations are distributed 
symmetrically on the two planes. 

i -component, g is the complex conjugate oi'g. fi is the 
shear modulus. The physical interpretation of equa- 
tion (I) is that the total force G = K: 2 fi in terms of 
the far field external stress intensity factor (small scale 
yielding) is linearly composed of the separate forces 
on crack and dislocations. Equation (1) is valid only 
when the dislocation distribution is symmetric (the 
situation considered in this paper) about the v-axis. 
The local force on the crack by itself is given by 

A, = A' - K,, 

A-,=;x/'/>/-= + 
V 2n:,    v 2*,,, 

(2) 

C, is the position of the /th dislocation in the complex 
plane. A',, is the screening contribution to A' at the 
crack tip due to ihe dislocation distribution. The 
physical meaning of equation (2) is that the crack is 
either screened (or antiscreened) from the externally 
imposed stress represented by the external A'-tield, 
depending on the sign of/),. 

In Fig. 2. since the v-component of force on a 
dislocation is given by Re(i?,/) = T,/),, where T is the 
shear stress on the slip plane, we can also write 

(3) l + Z TA = ^ + 21   T(.V)a(.v) d.v = K2
I2 /(. 

Here we have replaced the discrete dislocations by a 
continuous linear distribution Ab, = fif.vjd.v. The in- 

Fig. J. Path for /-integral. F is a path outside Ihe crack and 
all dislocations. ■/ encloses the crack tip. and .V, and S: 

enclose the two symmetric dislocation distributions on the 
parallel slip planes. 



WEERTMAN fl ul..   DOUBLE SLIP PLANE CRACK MODEL 475 

tegration is carried out on only one slip plane, but 
in Fig. (2). we assume that the distribution on each 
slip plane is identical, accounting for the factor 2 
before the integration in equation (3). 

Equation (3) is easily generalized to mode II and 
mode I by taking the y-integra! (the ./-integral of Rice 
[5] which is identical in the elastic case to the f, 
integral proposed earlier by Eshelby [6]) path shown 
in Fig. 3. (This is in fact what was done in Ref. [4].) 
The external path enclosing crack and dislocations 
yields the total crack extension force, O" = K: 2 Jf'ft, 
where Jf' is a mode dependent factor given below, g, 
is K^l.X'fi. and the path around the dislocation 
distribution is given by 

Re(G)= (Vdi--f-Udi |.     (4) 

Thus we can replace (3) by the more general 

j?, + 2      T(x)B(x)dx = K:!2.rn 

Mode III 

v Mode II. 
(5) 

It should be noted in equation (3) and (5) that we 
are considering only the case when a continuous 
dislocation distribution B{x) does not have a stress 
singularity associated with it. This is the case when 
T(.V) is finite everywhere on the slip planes. If stress 
singularities exist at an end of a dislocation distribu- 
tion, as they would if dislocations were piled up 
against an obstacle, the integrals of (3) and (5) must 
be evaluated with great care. For example, in that 
case, a finite contribution is made to the ./-integral 
from the tips of the distribution, whereas when T(.V) 

is everywhere finite, the contribution from the tips is 
zero [7]. 

It should be noted that equation (2) and (5) can be 
rewritten in terms of the (total) dislocation produced 
shielding or antishielding stress intensity factor, L, of 
Rice and Thomson [8]. Equation (2) then becomes 

K, = K + L (6) 

where L has a positive value in the antishielding case 
and a negative value in the shielding situation. In 
equation (5) let the integral term be set equal to 

f T(.v)Ä(.v)d.V= —/ 
An 

(7) 

where / is defined by this equation. Equation (5) can 
be written as 

K,= K(\-I/K2y2. (8) 

Combining equations (6) and (8) gives 

L = -K+(K'-iy2. (9) 

STATIONARY CRACK 

We now explore the result of a sequence of events 
in which we allow a sharp slip crack to generate a 

dislocation distribution on the discrete slip planes of 
Figs 1 and 2, but require the crack to remain station- 
ary. Specifically, (I) we place a slit crack in an 
otherwise perfect elastic medium; (2l we allow 
sources to operate anywhere on each of the two slip 
planes so that identical distributions are produced on 
each. It is a property of these distributions that equal 
numbers of dislocations of positive and negative 
burgers vector are produced on each slip plane 
because a dislocation source always produces dis- 
locations in pairs. Thus 

B(.v)d.v =0; 

(3) we allow the dislocation distribution to come into 
force equilibrium, so that the total force acting on a 
dislocation is zero. The elastic portion of the force 
will be made up of the total elastic shear stress, t, 
acting at the dislocation in question from all the other 
dislocations and the stress from the crack. There will 
also be a force due to lattice friction, due to the 
etfective lattice friction stress which we call a,. Thus 
we can write in equilibrium that 

T(.V/)=  -(T,(.V,). (10) 

If ff, is a simple constant, then the crack model would 
simulate a perfectly plastic solid. If a, increases with 
the displacement. D. across a slip plane where 

0(.v) = r fl(.v)d.v (I 

then the crack model would simulate work hard- 
ening. (The reader will note that true "work hard- 
ening" is not really consistent with our model, be- 
cause the interaction with the other dislocations is 
presumably included in equation (3) or (5). In true 
work hardening, "redundant" dislocations of op- 
posite sign are all important. The net Burgers vector 
of these redundant dislocations in any small volume 
element is equal to zero, and consequently they do 

not appear in a dislocation distribution function 
B{x). We therefore have to assume for this purpose 
that there are other effects which increase a,, perhaps 
lattice debris, other dislocations in walls, etc.. which 
we do not otherwise explicitly countenance. (How- 
ever, making af depend upon D does give us an 
analytic way to bring the real effects of deformation 
into our simplified model.) 

We now calculate the total elastic force on the 
dislocations from equation (3) or (5). This is given by 

Zl^ll     T(.v)fl(.v)d.v= -21     ff, B(x)dx.    (12) 

In the spirit of the last paragraph, we now assume 
that (T, = (1,(0). Since 5(.v)d.Y =dD, we then have 

<T,(.v)fl(.v)d.v <T/(D)dß=0.    (13) 
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Likewise. / given in equation (7) is zero. Substituting 
for I,gä in (3) or (5), we then have 

g,= 
K;        K2 

2 Jf n ~ 2 Jf > 
(14) 

(or from equations (8) and (9) K,= K and L = 0), and 
the crack lip is not screened by the deformation zone. 
Although this result is derived for two parallel slip 
planes, it is also valid for an arbitrary number of slip 
planes parallel to the cleavage plane in which sym- 
metry about the .v axis is preserved. 

This result is so striking that it deserves additional 
discussion and verification. (This result, as pointed 
out by a reviewer, is obvious from the original 
interpretation of Eshelby's [6] f, integral, f, measures 
the resultant on the crack tip of the forces due to the 
elastic field on all the dislocations, which is opposite 
to the traction stress. With equal numbers of dis- 
locations of opposite sign, and each opposed by the 
traction stress, only the crack extension force re- 
mains.) Suppose we have only one pair of dis- 
locations of opposite sign on each of the slip planes 
of Fig. 4, and assume mode III. Then we explore the 
possibility of setting the dislocation contribution to K 
equal to zero 

1 I 

„y/irtCi       y 2nC: 

 cos-^sin«, 
2K»'v      t 

cos^y/sinO, (15) 

For any value of 0, (where we place A,) in the range 
0 < ö| < 7t, there is another and different value for ö: 

(where we place A2) for which Ä^ = 0 (except for the 
single angle where only one value of 0 satisfies (15), 
Ö = 2 tan"1 \/y/i). From equations (3) and (4) when 

Re(f,+|2) = 0. (16) 

and if there exists an effective lattice friction stress, u,, 
which is the same for each dislocation, since 
bf = —b,, we have constructed an equilibrium 
configuration for which there is no screening. Equa- 
tion (14) is thus confirmed. We note that as H-»0 in 
equation (IS) the argument degenerates. 

The nonshielding result of equation (14) is a special 
case for slip planes which are parallel to the cleavage 
plane. However, even in cases where this geometry is 
not approximately a valid picture, we retain some 
features of the nonshielding result. The reason is that 

C c. 

Fig. 4. Schematic figure for two pairs of dislocations in 
non-shielding configuration. Coordinates of dislocations are 

labelled. 

a' 

Fig. 5. Friction law. Dashed lines show the law obeyed for 
reversed slip following forward slip with work hardening. 
The full line for negative slip indicates a fully reversible slip 

law. 

in all cases, dislocations will initially be formed in 
pairs, and the pair dipoles will be so oriented that the 
antiscreening dislocation will be closest to the crack, 
and will be attracted toward it. Hence, the initial 
effect of loading a stationary crack will not be to 
shield it, but shielding can only occur as a later stage 
of the total process. We turn now to a discussion of 
possible later stages. 

GROWING CRACK 

Let us suppose we have a stationary crack with two 
active double slip planes as described in the previous 
section in which ^ = 0 and K = K,, and that we 
begin to increase K in adiabatic fashion. When the 
value o( K, reaches the Griffith critical value for crack 
propagation in a perfectly brittle solid, the crack 
propagates. However, when this happens, the re- 
lations between the elastic stresses, r and a, which are 
responsible for establishing the equilibrium of the 
dislocation configuration become altered, and the 
nonshielding solution, equation (10). breaks up. In 
effect, the antishielding dislocations undergo reversed 
slip if they are carried along with the propagating 
crack, and a, for these dislocations then changes sign. 
See Fig. (5). This reversal of af means that the crack 
will leave the antishielding component behind, and 
the shielding dislocations will be pushed ahead of it. 
The net effect is that only the shielding dislocations 
are left in the distribution. The sum in equation (3) 
to obtain Kj is then finite and positive, and A" > A", so 
that the crack tip is shielded. 

That antishielding dislocations cannot be carried 
along by a growing crack can be understood from the 
following considerations. If antishielding dislocations 
were carried along and thus move in the same 
direction as the shielding dislocations, the stress on 
the slip plane must change discontinuously from the 
value a, to the value — a, if there is no gap on the slip 
plane between the shielding and the antishielding 
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BU) 
(a) 

Bit«) 

Crack 
Plan* 

Fig. 6. Dislocation distribution, (a) Schematic dislocations 
for one of a pair of parallel slip planes. The distribution near 
x = w falls to zero smoothly, (b) For the purposes of 
analyses, we assume the dislocation distribution is on the 
crack plane, and that the closest approach of the dislocation 

distribution to the crack tip is if. 

dislocations. But a stress discontinuity of this type 
can be produced only by a logarithmically divergent 
dislocation distribution which has the same sign on 
either side of the discontinuity. (This can be shown 
using the usual Hilbert transform integral equations 
that appear in, for example, the BCS crack theory.) 
Hence no solution exists if no gap exists. But suppose 
a gap does exist. The antishielding dislocation must 
trail after the shielding dislocations. If they were in 
the forward position they would be pulled into the 
shielding dislocations because of the attractive stress 
fields of both the crack tip and the shielding dis- 
locations. Because the friction stress is supposed to 
have a reversed sign in the region of the antishielding 
dislocations, the.e dislocations, too, according to 
equation (3) or (7), are shielding dislocations and 
cause a reduction in the value of K,. But the anti- 
shielding stress intensity factor L of the antishielding 
dislocations cannot change their sign according to the 
equations of Rice and Thomson [5]. Thus our sup- 
position that there is a zone of antishielding dis- 
locations, with a reversed friction stress that is carried 
along with the crack tip through the attraction of 
these dislocations towards the shielding dislocations, 
has led to an inconsistent result and the assumption 
must be incorrect. 

We will now carry out an analysis of the shielding 
to show how it depends in detail on the material 
parameters. We shall assume the distance, w, is small 
compared to the length over which the dislocations 
are distributed. In this case, the closest approach of 
any dislocation to the crack tip will be »v. Further, 
except for those dislocations closest to the tip, the 
angular part of the crack is negligible, and 0 can be 
taken 0 =Q to good approximation. Thus we can 
approximate the entire distribution and its effect on 
the crack by replacing the pair of slip planes with a 
single line of dislocations on the cleavage plane, but 
where the distribution begins at .v = w. That is, we 

assume a "dislocation free zone" in front of the 
crack, to correspond to the slip plane separation, ir. 
See Fig. 6a. b. This strategem allows us to carry out 
a rigorous analysis. 

From Ref. (4) the force on an arbitrary dislocation 
on the slip line is 

#,/ = - 
Kb 

Jinx 

Hhl  ) yUb'h 
Anx    J"  2n 

(17) 

v is the distance on the cleavage plane from the crack 
tip to the dislocation, and a sum is taken over all 
other dislocations at .v' of Burgers vector h'. Adop- 
ting a continuum limit, we set Ah = B(x)dx. and 
write 

nB(x)dx 
4rt.v 

+ 
u   CR   [P B(x') f        / l-L=-af(x)   (18) 
In   „, v .v .v —.v 

a/ix) on the right is the lattice friction stress, and with 
it (18) is the condition for equilibrium to be satisfied. 
We shall take a, as a constant in the following, 
because otherwise the mathematics becomes intrac- 
table. The second term is of lower order than the 
others, and must be dropped. We note that this 
dropout of the self-image term demonstrates a phys- 
ical difference between continuum theories and dis- 
crete theories. The self-image term is known to be 
dominant at distances of order h from the crack tip, 
and thus all continuum theories, because they lose 
this scale parameter, are essentially helpless to discuss 
atomic phenomena at the crack tip. Equation (18) 
can be put in the canonical integral equation form 

ß{x') = Jx'B(x') (19) 

This is the standard singular integral discussed by 
Muskhelishvili [9] and we refer the reader to the 
paper of Head and Louat [10] for its solution. This 
problem has been solved recently in a different way 
by Chang and Ohr [11]. After carrying out the 
analysis described below, we discovered that 
Majumdar and Burns [12] in a paper shortly to be 
published have carried out the solution by a tech- 
nique very close to our own. However, since we are 
interested in the analytic results which can be ob- 
tained on the assumption that w -4 R, we shall indi- 
cate our steps in summary form below. 

The uniqueness relation of Head and Louat [10] for 
a distribution fl(.v) which has zero values at iv and R 
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is given by 

K = -^Ina, I, I 

    d.v'-. 2R 
{x'-w){R-x') v 

~\n4R »■ 
2SR 

/, 
d.v' 

(20) 
J. v (v'-»)(«-.V) 

The integral equation is inverted by the equation 

2    /(.v-..)(/{-v) f A7,(.v) 
5(.V) = / 1 =:- +   (T,/, 

I d.v' 
= 0 

h = 

» v (v'-..)(/?-.v')V-.v 

(v'-ir)(/?-.v).v-v' 
(21) 

Using the uniqueness relation, (20), and carrying out 
the integration to find K, from (3), we have 

^K-j^r^-.    (22) 

K, 1 /, 
1 +- 

K n 'J 

v'2^..     v 

Combining the previous equations we find 

>/C.v-H'KÄ-H)JL-d.v.      (23) 
.V 

We carry out the integrations indicated in the limit 
R P w by elementary integrals and find to lowest 
order in »IR 

K,     3    /»• 

irW*(,n4Ä/w'+4/3) 

-3/2 r- 
A:, = —^-CT.Tir x(ln4/?/u+4/3).       (24) 

This result is equivalent to that obtained by Ma- 
jumdar and Burns [12], Its form in equation (24) is 
particularly useful to us because of its simple analytic 
character. 

It should be noted that the result given by equation 
(24) says that the total integrated burgers vector of 
the dislocations ahead of the crack tip is the maxi- 

mum possible subject to the condition that at a 
distance H- ahead of the crack tip the stress is equal 
to Of. It is, of course, possible to find a solution in 
which a smaller number of dislocations are present 
ahead of the crack tip. The value of K, then is larger 
than that given by equation (24). Bu: in this situation 
the stress would be larger than (r, at the distance in 
If more dislocations were present, the dislocation 
distribution would either have to start at a distance 
smaller than iv, or if the dislocations were restricted 
to start at w. an infinite stress at this position is 
required to prevent the dislocations from ap- 
proaching closer to the crack tip. 

We note that equation (24) contains the shielding 
physics which the BCS model does not. lor example, 
if we let u >() as in the BCS model. A', »0. wherein 
we lose the K field of the underlying crack entirely. 
For us. M' will retain the meaning of the separation 
between slip planes. We note that for slip planes 
actually separated from the cleavage plane, (hat is, as 
shown in Fig. 1 rather than Fig. 6b, the solution very 
near the tip will be somewhat dilferent from the 
cleavage plane model of equation (23). The distribu- 
tion near the crack tip will not cut off as sharply as 
in (21), but this difference is expected to be a minor 
quantitative effect rather than a qualitative one. 

To incorporate work hardening directly into the 
dislocation equilibrium equations, (18), n, would 
have to be a function of the local density B[\). and 
there would be no analytic solution of the integral 
equation. However, if we allow o, to be a function of 
the total dislocation content of the slip plane, we can 
then incorporate a simple work hardening law into 
our results. Thus, we shall set 

a^n„(r>* DJ" 

fl(.v)d.v -r (25) 

<:„ and Dn are constants, and m is the work hardening 
exponent, ()</«<!. 

To the lowest order in ir R. for mode III, we 
integrate B(\) to obtain 

D* = 
2K     R 

(26) 

Then, combining equation (24), (25) and (26) we 
obtain 

V 

/' = IS 

v2A,/< 
(7lrm(\n4Rlw +4/3)" 

(27) 

From equation (27) and our previous discussion, we 
can now predict the overall behavior of a bare crack 
when at time / = 0, we load it up and allow defor- 
mation to proceed in the vicinity of the crack tip. We 
must first assume that the crack will propagate 
whenever K, exceeds a critical value for cleavage of a 
pure brittle crack in the solid, Ä',,,. In an uncom- 
plicated situation, we must reasonably assume this 
critical value is the Griffith value 

A-,„ = v47//  r (28) 

where y is the intrinsic surface energy of the solid. At 
time / = 0, the crack is loaded, and dislocation pairs 
are created on the slip planes. For a short transient 
period, the pairs remain in the vicinity of the crack 
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tip, and the Kj remains near zero. The external K is 
transmitted directly to the crack tip unshielded. The 
crack will accelerate as soon as A',,, is achieved, the 
shielding dislocations will be shoved ahead of the 
crack, and antishielding ones will be sloughed ofl" at 
the rear. As the shielding "charge" is built up around 
the tip with the loss of the antishielding dislocations, 
the crack will require larger and larger external K to 
keep A.', above its critical cleavage value. Ultimately, 
a steady state is conceivable in which the shielding 
charge is constant, and in this case, the relation 
interconnecting the external K, Kch. w, m. etc., will be 
given by equation (27). Equation (27) then becomes 
a model fracture criterion for the material. 

Equation (27) may be compared with the elastic 
enclave models of references [I] and [2]. (We have 
shown separately [13] that the versions of the pre- 
vious elastic enclave models are equivalent.) Here, 
however, we have a more satisfying model of cracking 
in terms of the dislocation theorist. Our model, we 
believe, should have the same kind of appeal which 
the original BCS mode! did, and through it we are 
able to see intuitively into the role dislocations and 
their discrete sources play in fracture. We can sum- 
marize this section by bringing together the various 
relations derived which interconnect K, K,. a,, m 

A 

3 
in- R 

(In4/J/H' 4-4/3) 

A= -2^/2lna,y/R 

ff/=-<T(1(D*/Oor 

D* = 
K    2R 

n 

Our principal result, equation (27), is a particular 
combination of these equations. 

In our model, the sources for the dislocations are 
assumed to be external to the crack tip, and the 
parameter, w. is a measure of the inhomogeneity of 
slip in all real materials. If the crack can itself 
generate dislocations out of the tip, this process will 
be governed by an essentially different type of physics 
which we do not address here. 

CYCLIC STRESS 

Consider next in a qualitative way "fatigue" 
growth under an applied cyclic stress. Let the cyclic 
stress vary from a = 0 to a = (j„UK and the con- 
ventional stress intensity factor A vary from A = 0 to 
A = A™, = (Tma,(ntf)1-. The fatigue crack will ad- 
vance an increment each cycle if "work hardening" 
occurs on the two slip planes, both during forward 
slip and during reverse slip. To see why, consider 
Fig. 7. Figure 7a shows schematically a dislocation 
distribution fi|(.v) = flma,(.v) that exists when 
IT = (7ma, and the crack has stopped its advance. This 
distribution produces a shielding stress intensity fac- 
tor Lmd% given by equation (9) to be 

K • crock tip 
position 

crock tip 

««crock tip 
position 

Fig. 7. Cyclic crack advance. Dislocation distribution on 
one slip plane, (a) At maximum stress (solid line) and when 
stress is reduced to zero (dashed line), (b) Dislocation 
distribution of (a) considered as the original distribution 
and a reversed slip distribution Br{\). (c) Alter the stress is 
again increased to maximum value if the crack tip were not 
to advance. Forward slip can be considered to occur by 
creation of additional distribution />,. (d) Crack advance. 
Dislocation in inactive slip /one are now "stuck" in slip 
plane and do not advance, (e) Activation of a slip /one and 
distribution function B' containing both negative and posi- 
tive dislocations. The negative dislocation eventually also 
become stuck, (f) After many stress cycles and many 
incremental crack advances. A wake of stuck dislocations of 

alternating sign are left behind. 

where lmm is the value of / from (7) when 
fl(.v) = flmi<(.v). Because the crack has stopped but 
was advancing immediately before the stress reached 
its maximum value 

"i - k-mn + '-tiKiv - *,/ (30) 

' ^man   i   '*» man        'mil*' (29) 

where A,,, is given by equation (28) and is the critical 
stress intensity factor of a Griffith crack. Further 
crack advance would reduce A, to a value smaller 
than K,h. the critical value for brittle propagation of 
the crack tip. Now let the external stress, a. and stress 
intensity factor. A, be reduced to zero. Then, in the 
absence of the repulsive forces on the dislocations due 
to the crack A-tield, the large dislocation density at 
the maximum near the crack tip (see Fig. 6a) will be 
forced in the negative direction on the slip plane 
(reversed slip) under the mutual repulsions of the 
dislocations until a new equilibrium distribution is 
achieved, as shown schematically by the dashed line 
of Fig. 7a. If the crack tip is locked in position, we 
expect many of these dislocations to be pushed well 
behind the crack tip. When they get into this region, 
however, they are in the presence of the open cleavage 
plane of the crack. Under these conditions, an inverse 
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image dislocation distribution is generated across the 
open crack plane which cancels the long range force 
fields of these (^slocations. In a sense, the crack faces, 
by converting the whole dislocations into dipoles 
absorbs these dislocations, so far as their long range 
stress fields are concerned, almost as effectively as if 
they were physically absorbed into the open cleavage 
faces. Only those dislocations which can be sustained 
by the modified a, (see below) under the mutual 
repulsive interactions from the dislocations will re- 
main in front of the crack. 

Secondly, on a microscopic level, we can expect the 
effect on the crack tip of decreasing K to zero to be 
important. In the absence of the external stress, a. 
because A', = L from equation (30), K, is a large 
negative number, because L is negative. If the crack 
tip is reversible, it will thus be driven backwards on 
its cleavage plane. Of course, cracks in materials of 
even modest ductility should be reversible only in a 
limited degree, and over very short distances, but if 
the crack tip can recede, this provides additional 
room for dislocations to stay ahead of the tip and not 
get lost behind it. In any case, the negative K, caused 
by the dislocation shielding will provide a large 
closure stress on the crack faces, and if the tip itself 
remains open, the situation will be analytically 
complex. 

With this general physical picture in mind, we turn 
to an analysis of our simple model. For definiteness, 
we assume the crack tip to be locked in position, so 
far as retrograde motion is concerned. After the 
external stress is turned off, but before the dis- 
locations are allowed to redistribute. K, = LmdX < 0. as 
noted above. Because of the reversed slip, however, 
the magnitude of L will be reduced. The reversed slip 
can be considered to occur by the creation of a new 
dislocation "reversed" distribution function Br{x) 
shown in Fig. 7b, which when added to the distribu- 
tion ßnuJ.v) gives the dashed distribution of Fig. 7a. 
Of course, fl,(.v) must satisfy Jflr(.v)d.v =0. The 
value of L is given after reversed slip by 

L   —   — A.'„la, 4" (A max — I may — 'r) 

where 

Tr(.v)ar(.v)d.v 

(31) 

(32) 

and T,(.V) is the total change of stress that must be 
produced in the reversed slip zone at point .v in order 
for slip to occur. For the case in which there is no 
work hardening rr(.v) would be equal to 2 an. because 
the stress started out as equal to a constant friction 
stress. (T0. before reversed slip started and the stress 
has to equal — a,, during the reversed slip. This is the 
value of Tr(.v), however, only in those regions of 
reversed slip where iSma>(.v)^0. Where 5nia>(.v) = 0 
and reversed slip occurs, T,(.V) is smaller than 2o,

0 

because the stress on the slip plane was smaller than 
(To where flma<(.v) = 0. Thus for the case where no 
work hardening occurs, t, is not a constant over the 

integral of equation (32), and /, is not equal to zero. 
Because S,(.v) is positive in the regions (see Fig. 7b) 
where rt(.v) is smaller than 2 rr,, the term /, is a 
negative quantity. The shielding intensity factor /, of 
equation (31) is a less negative quantity (less 
shielding) than /.m,iv. This result is also true when 
work hardening occurs. 

Let the stress, which has been reduced to zero, 
increase again to the level (Tma,. Forward slip will 
occur, as shown in Fig. 7c, in the reversed slip zone. 
If the crack tip were not to advance the shielding 
intensity factor /.* is now given by 

L ~ - K„m + (A"-,,,, — /„,,„ — /, — /,) 

where 

// = ^U(.v)ß,(.v)d.v 

(33) 

(34) 

where ^(.v) is the new additional dislocation distri- 
bution produced by the forward slip (|Ä/(.v)djf = 0) 
and xf(x) is the total change in stress on the slip plane 
in the region where ^(.v) # 0. When no work hard- 
ening occurs over the region where ÄmilJl(;0 # 0. then 
T^(x) = 2(r0. But where Amax(.v) = 0, the stress T,(.t) 
will be smaller than 2 a0 by the identical amount that 
rp(.v) in the same region was smaller than 2an. 
Because B,{x)= -Br(x) when no work hardening 
occurs. /,= -/,. Consequently. Z. = Lma, and no 
crack advance will occur. 

Suppose work hardening occurs during slip. Let 
equation (25) be generalized for reversed slip (see 
Fig. 5) to give for the friction stress 

(!f~(<rltIDS){E\D*n + ff' (35) 

where the sum on D* is the sum of the absolute 
values of all displacements that have occurred at any 
particular point .v on a slip plane. (In reversed slip the 
friction stress is given by equation (35), but with a 
negative sign on the righthand side of the equation.) 

Because of work hardening Br{x)^ —B^x) and 
/, ¥= —if. The increase in the value of r^.v) and T,(.V) 
produced by work hardening can be expected to 
increase the magnitude of /r and I, given by equations 
(32) and (34). However, the same work hardening will 
make the magnitude of Br(x) and fi,(.v) smaller, an 
effect which will decrease the values of/r and /,. If the 
power exponent m of equation (35) is smaller than I 
the effect of work hardening on T, and T, will be 
smaller than on Br and fl, and consequently | /, | < /,. 
Thus, if the crack tip were not to advance upon 
increasing the stress again lo a = amiX the shielding 
intensity factor L is smaller in magnitude than Z.maK. 
The crack tip stress intensity factor K, will be larger 
than Kch. Thus, the crack tip must advance before a 
attains its maximum value. As the crack advances it 
will leave behind it. "stuck" on the slip plane, part of 
its dislocation distribution as indicated in Fig. 7d. 
Part of the distribution is left behind because on the 
trailing edge of the distribution \B,\ < B,. 

As the crack advances and spreads out the distribu- 
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tion fi|(.v) the crack tip stress intensity factor K, will 
actually increase further without increasing the stress. 
Note that /„,„ is equal to 

L t(.v)fl,(.v)d.tf (36) 

where T(.V ) is equal to the yield stress on the slip plane 
wherever 5|(.v)#0. Here fl|(.v) is the distribution 
shown by the solid line of Fig. 7a. Now if the crack 
advances and spreads out the distribution ZM.v), the 
trailing "stuck" edge of this distribution will be in 
regions where the stress on the slip plane is smaller 
than the yield stress. In the regions where slip is 
occurring T{.V) is equal to the yield stress and has the 
same value as the yield stress in equation (36). Thus 
the "stretched" dislocation distribution BM of Fig. 7d 
will lead to a value of /slr, with sufficient crack 
advance, that is smaller than /„,„„. Therefore, K, 
increases in value with crack advance. But this in- 
crease cannot go on indefinitely. A large value of K, 
means that the stress field of the crack tip is increased. 
Eventually this increased stress field will produce slip 
near, but ahead, of the crack tip as shown in Fig. 7e. 
This slip can be described with still another dis- 
location distribution function B'{x) where again 
Jfl'(x) d.v = 0. The positive dislocations of this func- 
tion are further from the crack tip as shown in Fig. 
7e, and move in the direction of the advancing crack 
tip. The negative dislocations move in the opposite 
direction. Eventually the negative dislocations in turn 
will also become stuck on the slip plane, but positive 
dislocations will join the moving dislocations of the 
distribution B\(x). Hence, the total number of posi- 
tive dislocations increases and the value of / also 
increases. This increase in turn decreases the value of 
A", until once again K, is equal to Kch. When the 
applied stress a has reached the value ami%, a limited 
amount of crack growth thus will insure that K, = Kch 

and the fatigue crack will stop. In the wake of the 
fatigue crack (on both of the slip planes) "stuck" 
dislocations of alternating sign will exist as shown in 
Fig. 7f. 

A rough estimate of the crack growth increment 
per stress cycle can be made as follows. To have crack 
advance in each cycle, the crack tip stress intensity 
factor K, given by equation (24) must equal K^ 
during the incremental growth. The work hardening 
under cyclic slip must, therefore, increase the average 
value of the friction stress a, to the point that 
K, = Kel,. Thus from equation (24) a, must attain the 
value 

af=KJßfi' (37) 

where ß is given by equation (27). Let öa be the 
increment of crack growth per cycle. From equation 
(20) when R ^ H', the length of a slip zone with an 

1 average friction stress a, is equal to nK^/H aj. The 
number of cycles n required for the crack to advance 
this distance is 

The average displacement D within this slip /one 
from equation (21) can be shown to be (for one of 
the slip zones of the two slip planes) equal to 
JT'tC^lb (T,/(. The sum 110 | thus is of the order of 
2/i/5 or 

l\D\ S.Jf7t^w 24a]fi öa. (39) 

Inserting equation (39) into (35) gives for a, 

a, = K/fl;;')1"""' u(.*'nKi
m„H?>u)•"0"•' "  (40) 

when the term a' is relatively unimportant. 
Inserting equation (40) into (37) gives the following 

equation for the incremental crack growth tiu per 
cycle 

da = (XnKijlAnWS^IKM' (41) 

This equation is a fourth power Paris equation. 
Since the fatigue crack growth is essentially deter- 
mined by an accumulated displacement criterion, a 
fourth power is what is to be expected [14). Since the 
term Kch = (4 /r//Jf)'2 equation (41) predicts that any 
environment that reduces the surface energy will 
increase the crack growth rate. 

It should be emphasized that equation (41) is not 
valid if either KmM is so large that fracture occurs 
under a monotonic increase of the stress towards the 
value (Tmax. Equation (41) also is not valid of Km.M is 
so small that the friction stress is never reached on the 
slip planes. If no slip occurs on these planes the crack 
will not propagate in fatigue. Thus, if ^maK/(2Äu)1: is 
smaller than the friction stress, clearly no fatigue 
crack propagation can take place. In other words, a 
threshold effect exists. 

DISCUSSION 

The original impetus for this paper was to see if a 
difference between the published results of the first 
and last authors [1,2] could be resolved. In one of 
these earlier calculations, the fracture stress calcu- 
lated for the elastic enclave model was shown to be 
proportional to ■/'2 where y is the surface energy. In 
the other, the fracture stress contained in a more 
complex power relation. In further work, one of us 
[10] has also shown that this discrepancy is due to the 
way one estimates the ratio of the plastic zone radius 
to the elastic enclave radius. However, in all calcu- 
lations of those sorts, in which continuum plasticity 
is used in a cut-off procedure at the elastic zone 
boundary, very severe problems are encountered 
regarding the kind of boundary condition to use at 
the elastic enclave radius. In this paper, we have thus 
adopted a relatively self-consistent one dimensional 
dislocation model where the boundary condition at 
the "elastic enclave" radius is not a problem. 

The investigation reported here shows that for the 
one dimensional model, the fracture stress a,, is the 
complex power law, equation (27) 

n =nKi„ISaiöa. (38) *. = (*;*/»•)" "//. 
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Here, K, = a, mi is the critical stress intensity factor 
at fracture, and a is the half length of the crack. 
(When the ürittith fracture condition determines the 
value of A|A. this term is equal to s4/r/ ■* .) Un- 
fortunately, however, this result is valid only for the 
one dimensional model, and the full two (and perhaps 
three) dimensionality of the slip around the crack tip 
might yield a still ditlerent result. 

One of the features of this work is the modification 
of the classical BCS model of one dimensional slip in 
front of a crack to include i'n elastic enclave, or 
dislocation free /one. Our calculation, though inde- 
pendently arrived at, is a limiting form of other work 
in press by Majumdar and Burns. This important 
result shows how the crack tip stress intensity factor 
A', can be related to the overall stress intensity factor. 
K. and it allows us to derive a fracture stress in terms 
of materials parameters for the one dimensional 
model. 

One of the interesting side features of this in- 
vestigation was the discovery that all continuum 
theories such as BCS or ours neglects the self-image 
term of the dislocations in the crack. This self-image 
term, which is present only in bonatide discrete 
calculations is important in determining the intrinsic 
elastic enclave region around the crack tip. which 
must otherwise be an unknown parameter, r, in the 
theory. In our work, ir is either a scale parameter 
determined by the crystalline heterogeneity of plastic 
flaw in the material, or as a lower limit, it is given by 
the self-image term calculable in a discrete dislocation 
model. 

In our model, we have also demonstrated one of 
the curiosities of the dislocation shielding theory, 
namely that under certain conditions it is possible for 
the shielding to be zero. In particular for a group of 
dislocations on certain slip planes in equilibrium with 
a certain kind of friction stress of which a, = const, 
is a special case, and where the total summed burgers 
vector is zero, the shielding is zero. 

Finally, we have applied these ideas to cyclic 
fatigue. In qualitative terms we showed that when the 
external stress cycles to "off", the large screening 
dislocation distribution near the crack tip explodes 
under the internal pressure of the mutual repulsive 
forces between the dislocations. Many of the dis- 
locations are pushed behind the crack, and "annihil- 
ated" there by the images in the crack faces, and the 
remainder left in front of the crack is that total 
number which can establish a new equilibrium in the 

distance R under the slip plane friction stress. tT,(v). 
This residual shielding distribution provides a closure 
stress on the tip which may drive the crack tip 
backwards, and in any case will weld portions of the 
cleavage plane back together. 

When the external stress is switched back "on" the 
Ä'-field of the crack regenerates the shielding charge 
partly by action sources on the slip plane, and partly 
by moving the "annihilated" dislocations back into a 
shielding configuration in front of the crack. 

If there is no work hardening, the dislocation 
distribution is essentially reversible under the stress; 
i.e. the sources can regenerate exactly the same 
distribution as in the previous cycle, with the crack in 
an unchanged position. However, if there is strain 
hardening, the sources are unable, at the same stress, 
to regenerate the same shielding charge; K, rises 
above Krh. and the crack moves forward to a position 
where fresh sources can be activated. Thus in our 
view, fatigue growth of the crack is due to strain 
hardening during stress cycling. Quantitative analysis 
indicates that a fourth power Paris equation describes 
the crack growth law. 
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